Metamath Proof Explorer


Definition df-h0op

Description: Define the Hilbert space zero operator. See df0op2 for alternate definition. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-h0op 0 hop = proj 0

Detailed syntax breakdown

Step Hyp Ref Expression
0 ch0o class 0 hop
1 cpjh class proj
2 c0h class 0
3 2 1 cfv class proj 0
4 0 3 wceq wff 0 hop = proj 0