Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
df-hash
Metamath Proof Explorer
Description: Define the set size function # , which gives the cardinality of a
finite set as a member of NN0 , and assigns all infinite sets the
value +oo . For example, ( # { 0 , 1 , 2 } ) = 3
( ex-hash ). (Contributed by Paul Chapman , 22-Jun-2011)
Ref
Expression
Assertion
df-hash
⊢ . = rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω ∘ card ∪ V ∖ Fin × +∞
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
chash
class .
1
vx
setvar x
2
cvv
class V
3
1
cv
setvar x
4
caddc
class +
5
c1
class 1
6
3 5 4
co
class x + 1
7
1 2 6
cmpt
class x ∈ V ⟼ x + 1
8
cc0
class 0
9
7 8
crdg
class rec ⁡ x ∈ V ⟼ x + 1 0
10
com
class ω
11
9 10
cres
class rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω
12
ccrd
class card
13
11 12
ccom
class rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω ∘ card
14
cfn
class Fin
15
2 14
cdif
class V ∖ Fin
16
cpnf
class +∞
17
16
csn
class +∞
18
15 17
cxp
class V ∖ Fin × +∞
19
13 18
cun
class rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω ∘ card ∪ V ∖ Fin × +∞
20
0 19
wceq
wff . = rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω ∘ card ∪ V ∖ Fin × +∞