Metamath Proof Explorer


Definition df-hcau

Description: Define the set of Cauchy sequences on a Hilbert space. See hcau for its membership relation. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hcau Cauchy = f | x + y z y norm f y - f z < x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccauold class Cauchy
1 vf setvar f
2 chba class
3 cmap class 𝑚
4 cn class
5 2 4 3 co class
6 vx setvar x
7 crp class +
8 vy setvar y
9 vz setvar z
10 cuz class
11 8 cv setvar y
12 11 10 cfv class y
13 cno class norm
14 1 cv setvar f
15 11 14 cfv class f y
16 cmv class -
17 9 cv setvar z
18 17 14 cfv class f z
19 15 18 16 co class f y - f z
20 19 13 cfv class norm f y - f z
21 clt class <
22 6 cv setvar x
23 20 22 21 wbr wff norm f y - f z < x
24 23 9 12 wral wff z y norm f y - f z < x
25 24 8 4 wrex wff y z y norm f y - f z < x
26 25 6 7 wral wff x + y z y norm f y - f z < x
27 26 1 5 crab class f | x + y z y norm f y - f z < x
28 0 27 wceq wff Cauchy = f | x + y z y norm f y - f z < x