Metamath Proof Explorer


Definition df-hlim

Description: Define the limit relation for Hilbert space. See hlimi for its relational expression. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hlim v = f w | f : w x + y z y norm f z - w < x

Detailed syntax breakdown

Step Hyp Ref Expression
0 chli class v
1 vf setvar f
2 vw setvar w
3 1 cv setvar f
4 cn class
5 chba class
6 4 5 3 wf wff f :
7 2 cv setvar w
8 7 5 wcel wff w
9 6 8 wa wff f : w
10 vx setvar x
11 crp class +
12 vy setvar y
13 vz setvar z
14 cuz class
15 12 cv setvar y
16 15 14 cfv class y
17 cno class norm
18 13 cv setvar z
19 18 3 cfv class f z
20 cmv class -
21 19 7 20 co class f z - w
22 21 17 cfv class norm f z - w
23 clt class <
24 10 cv setvar x
25 22 24 23 wbr wff norm f z - w < x
26 25 13 16 wral wff z y norm f z - w < x
27 26 12 4 wrex wff y z y norm f z - w < x
28 27 10 11 wral wff x + y z y norm f z - w < x
29 9 28 wa wff f : w x + y z y norm f z - w < x
30 29 1 2 copab class f w | f : w x + y z y norm f z - w < x
31 0 30 wceq wff v = f w | f : w x + y z y norm f z - w < x