Metamath Proof Explorer


Definition df-homa

Description: Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma and df-coda . (Contributed by FL, 6-May-2007) (Revised by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-homa Hom a = c Cat x Base c × Base c x × Hom c x

Detailed syntax breakdown

Step Hyp Ref Expression
0 choma class Hom a
1 vc setvar c
2 ccat class Cat
3 vx setvar x
4 cbs class Base
5 1 cv setvar c
6 5 4 cfv class Base c
7 6 6 cxp class Base c × Base c
8 3 cv setvar x
9 8 csn class x
10 chom class Hom
11 5 10 cfv class Hom c
12 8 11 cfv class Hom c x
13 9 12 cxp class x × Hom c x
14 3 7 13 cmpt class x Base c × Base c x × Hom c x
15 1 2 14 cmpt class c Cat x Base c × Base c x × Hom c x
16 0 15 wceq wff Hom a = c Cat x Base c × Base c x × Hom c x