Database
BASIC CATEGORY THEORY
Arrows (disjointified hom-sets)
df-homa
Metamath Proof Explorer
Description: Definition of the hom-set extractor for arrows, which tags the morphisms
of the underlying hom-set with domain and codomain, which can then be
extracted using df-doma and df-coda . (Contributed by FL , 6-May-2007) (Revised by Mario Carneiro , 11-Jan-2017)
Ref
Expression
Assertion
df-homa
⊢ Hom a = c ∈ Cat ⟼ x ∈ Base c × Base c ⟼ x × Hom ⁡ c ⁡ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
choma
class Hom a
1
vc
setvar c
2
ccat
class Cat
3
vx
setvar x
4
cbs
class Base
5
1
cv
setvar c
6
5 4
cfv
class Base c
7
6 6
cxp
class Base c × Base c
8
3
cv
setvar x
9
8
csn
class x
10
chom
class Hom
11
5 10
cfv
class Hom ⁡ c
12
8 11
cfv
class Hom ⁡ c ⁡ x
13
9 12
cxp
class x × Hom ⁡ c ⁡ x
14
3 7 13
cmpt
class x ∈ Base c × Base c ⟼ x × Hom ⁡ c ⁡ x
15
1 2 14
cmpt
class c ∈ Cat ⟼ x ∈ Base c × Base c ⟼ x × Hom ⁡ c ⁡ x
16
0 15
wceq
wff Hom a = c ∈ Cat ⟼ x ∈ Base c × Base c ⟼ x × Hom ⁡ c ⁡ x