Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Axiomatization of complex pre-Hilbert spaces
Preliminary ZFC lemmas
df-hvsub
Metamath Proof Explorer
Description: Define vector subtraction. See hvsubvali for its value and hvsubcli for its closure. (Contributed by NM , 6-Jun-2008)
(New usage is discouraged.)
Ref
Expression
Assertion
df-hvsub
⊢ - ℎ = x ∈ ℋ , y ∈ ℋ ⟼ x + ℎ -1 ⋅ ℎ y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmv
class - ℎ
1
vx
setvar x
2
chba
class ℋ
3
vy
setvar y
4
1
cv
setvar x
5
cva
class + ℎ
6
c1
class 1
7
6
cneg
class -1
8
csm
class ⋅ ℎ
9
3
cv
setvar y
10
7 9 8
co
class -1 ⋅ ℎ y
11
4 10 5
co
class x + ℎ -1 ⋅ ℎ y
12
1 3 2 2 11
cmpo
class x ∈ ℋ , y ∈ ℋ ⟼ x + ℎ -1 ⋅ ℎ y
13
0 12
wceq
wff - ℎ = x ∈ ℋ , y ∈ ℋ ⟼ x + ℎ -1 ⋅ ℎ y