Metamath Proof Explorer


Definition df-iccp

Description: Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020)

Ref Expression
Assertion df-iccp RePart = m p * 0 m | i 0 ..^ m p i < p i + 1

Detailed syntax breakdown

Step Hyp Ref Expression
0 ciccp class RePart
1 vm setvar m
2 cn class
3 vp setvar p
4 cxr class *
5 cmap class 𝑚
6 cc0 class 0
7 cfz class
8 1 cv setvar m
9 6 8 7 co class 0 m
10 4 9 5 co class * 0 m
11 vi setvar i
12 cfzo class ..^
13 6 8 12 co class 0 ..^ m
14 3 cv setvar p
15 11 cv setvar i
16 15 14 cfv class p i
17 clt class <
18 caddc class +
19 c1 class 1
20 15 19 18 co class i + 1
21 20 14 cfv class p i + 1
22 16 21 17 wbr wff p i < p i + 1
23 22 11 13 wral wff i 0 ..^ m p i < p i + 1
24 23 3 10 crab class p * 0 m | i 0 ..^ m p i < p i + 1
25 1 2 24 cmpt class m p * 0 m | i 0 ..^ m p i < p i + 1
26 0 25 wceq wff RePart = m p * 0 m | i 0 ..^ m p i < p i + 1