Metamath Proof Explorer


Definition df-ig1p

Description: Define a choice function for generators of ideals over a division ring; this is the unique monic polynomial of minimal degree in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)

Ref Expression
Assertion df-ig1p idlGen 1p = r V i LIdeal Poly 1 r if i = 0 Poly 1 r 0 Poly 1 r ι g i Monic 1p r | deg 1 r g = sup deg 1 r i 0 Poly 1 r <

Detailed syntax breakdown

Step Hyp Ref Expression
0 cig1p class idlGen 1p
1 vr setvar r
2 cvv class V
3 vi setvar i
4 clidl class LIdeal
5 cpl1 class Poly 1
6 1 cv setvar r
7 6 5 cfv class Poly 1 r
8 7 4 cfv class LIdeal Poly 1 r
9 3 cv setvar i
10 c0g class 0 𝑔
11 7 10 cfv class 0 Poly 1 r
12 11 csn class 0 Poly 1 r
13 9 12 wceq wff i = 0 Poly 1 r
14 vg setvar g
15 cmn1 class Monic 1p
16 6 15 cfv class Monic 1p r
17 9 16 cin class i Monic 1p r
18 cdg1 class deg 1
19 6 18 cfv class deg 1 r
20 14 cv setvar g
21 20 19 cfv class deg 1 r g
22 9 12 cdif class i 0 Poly 1 r
23 19 22 cima class deg 1 r i 0 Poly 1 r
24 cr class
25 clt class <
26 23 24 25 cinf class sup deg 1 r i 0 Poly 1 r <
27 21 26 wceq wff deg 1 r g = sup deg 1 r i 0 Poly 1 r <
28 27 14 17 crio class ι g i Monic 1p r | deg 1 r g = sup deg 1 r i 0 Poly 1 r <
29 13 11 28 cif class if i = 0 Poly 1 r 0 Poly 1 r ι g i Monic 1p r | deg 1 r g = sup deg 1 r i 0 Poly 1 r <
30 3 8 29 cmpt class i LIdeal Poly 1 r if i = 0 Poly 1 r 0 Poly 1 r ι g i Monic 1p r | deg 1 r g = sup deg 1 r i 0 Poly 1 r <
31 1 2 30 cmpt class r V i LIdeal Poly 1 r if i = 0 Poly 1 r 0 Poly 1 r ι g i Monic 1p r | deg 1 r g = sup deg 1 r i 0 Poly 1 r <
32 0 31 wceq wff idlGen 1p = r V i LIdeal Poly 1 r if i = 0 Poly 1 r 0 Poly 1 r ι g i Monic 1p r | deg 1 r g = sup deg 1 r i 0 Poly 1 r <