Metamath Proof Explorer
Definition df-ii
Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)
|
|
Ref |
Expression |
|
Assertion |
df-ii |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cii |
|
| 1 |
|
cmopn |
|
| 2 |
|
cabs |
|
| 3 |
|
cmin |
|
| 4 |
2 3
|
ccom |
|
| 5 |
|
cc0 |
|
| 6 |
|
cicc |
|
| 7 |
|
c1 |
|
| 8 |
5 7 6
|
co |
|
| 9 |
8 8
|
cxp |
|
| 10 |
4 9
|
cres |
|
| 11 |
10 1
|
cfv |
|
| 12 |
0 11
|
wceq |
|