Metamath Proof Explorer


Definition df-ii

Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion df-ii II = MetOpen abs 0 1 × 0 1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cii class II
1 cmopn class MetOpen
2 cabs class abs
3 cmin class
4 2 3 ccom class abs
5 cc0 class 0
6 cicc class .
7 c1 class 1
8 5 7 6 co class 0 1
9 8 8 cxp class 0 1 × 0 1
10 4 9 cres class abs 0 1 × 0 1
11 10 1 cfv class MetOpen abs 0 1 × 0 1
12 0 11 wceq wff II = MetOpen abs 0 1 × 0 1