Metamath Proof Explorer


Definition df-imas

Description: Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly f must either be injective or satisfy the well-definedness condition f ( a ) = f ( c ) /\ f ( b ) = f ( d ) -> f ( a + b ) = f ( c + d ) for each relevant operation.

Note that although we call this an "image" by association to df-ima , in order to keep the definition simple we consider only the case when the domain of F is equal to the base set of R . Other cases can be achieved by restricting F (with df-res ) and/or R ( with df-ress ) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by AV, 6-Oct-2020)

Ref Expression
Assertion df-imas 𝑠 = f V , r V Base r / v Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 cimas class 𝑠
1 vf setvar f
2 cvv class V
3 vr setvar r
4 cbs class Base
5 3 cv setvar r
6 5 4 cfv class Base r
7 vv setvar v
8 cnx class ndx
9 8 4 cfv class Base ndx
10 1 cv setvar f
11 10 crn class ran f
12 9 11 cop class Base ndx ran f
13 cplusg class + 𝑔
14 8 13 cfv class + ndx
15 vp setvar p
16 7 cv setvar v
17 vq setvar q
18 15 cv setvar p
19 18 10 cfv class f p
20 17 cv setvar q
21 20 10 cfv class f q
22 19 21 cop class f p f q
23 5 13 cfv class + r
24 18 20 23 co class p + r q
25 24 10 cfv class f p + r q
26 22 25 cop class f p f q f p + r q
27 26 csn class f p f q f p + r q
28 17 16 27 ciun class q v f p f q f p + r q
29 15 16 28 ciun class p v q v f p f q f p + r q
30 14 29 cop class + ndx p v q v f p f q f p + r q
31 cmulr class 𝑟
32 8 31 cfv class ndx
33 5 31 cfv class r
34 18 20 33 co class p r q
35 34 10 cfv class f p r q
36 22 35 cop class f p f q f p r q
37 36 csn class f p f q f p r q
38 17 16 37 ciun class q v f p f q f p r q
39 15 16 38 ciun class p v q v f p f q f p r q
40 32 39 cop class ndx p v q v f p f q f p r q
41 12 30 40 ctp class Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q
42 csca class Scalar
43 8 42 cfv class Scalar ndx
44 5 42 cfv class Scalar r
45 43 44 cop class Scalar ndx Scalar r
46 cvsca class 𝑠
47 8 46 cfv class ndx
48 44 4 cfv class Base Scalar r
49 vx setvar x
50 21 csn class f q
51 5 46 cfv class r
52 18 20 51 co class p r q
53 52 10 cfv class f p r q
54 15 49 48 50 53 cmpo class p Base Scalar r , x f q f p r q
55 17 16 54 ciun class q v p Base Scalar r , x f q f p r q
56 47 55 cop class ndx q v p Base Scalar r , x f q f p r q
57 cip class 𝑖
58 8 57 cfv class 𝑖 ndx
59 5 57 cfv class 𝑖 r
60 18 20 59 co class p 𝑖 r q
61 22 60 cop class f p f q p 𝑖 r q
62 61 csn class f p f q p 𝑖 r q
63 17 16 62 ciun class q v f p f q p 𝑖 r q
64 15 16 63 ciun class p v q v f p f q p 𝑖 r q
65 58 64 cop class 𝑖 ndx p v q v f p f q p 𝑖 r q
66 45 56 65 ctp class Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q
67 41 66 cun class Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q
68 cts class TopSet
69 8 68 cfv class TopSet ndx
70 ctopn class TopOpen
71 5 70 cfv class TopOpen r
72 cqtop class qTop
73 71 10 72 co class TopOpen r qTop f
74 69 73 cop class TopSet ndx TopOpen r qTop f
75 cple class le
76 8 75 cfv class ndx
77 5 75 cfv class r
78 10 77 ccom class f r
79 10 ccnv class f -1
80 78 79 ccom class f r f -1
81 76 80 cop class ndx f r f -1
82 cds class dist
83 8 82 cfv class dist ndx
84 vy setvar y
85 vn setvar n
86 cn class
87 vg setvar g
88 vh setvar h
89 16 16 cxp class v × v
90 cmap class 𝑚
91 c1 class 1
92 cfz class
93 85 cv setvar n
94 91 93 92 co class 1 n
95 89 94 90 co class v × v 1 n
96 c1st class 1 st
97 88 cv setvar h
98 91 97 cfv class h 1
99 98 96 cfv class 1 st h 1
100 99 10 cfv class f 1 st h 1
101 49 cv setvar x
102 100 101 wceq wff f 1 st h 1 = x
103 c2nd class 2 nd
104 93 97 cfv class h n
105 104 103 cfv class 2 nd h n
106 105 10 cfv class f 2 nd h n
107 84 cv setvar y
108 106 107 wceq wff f 2 nd h n = y
109 vi setvar i
110 cmin class
111 93 91 110 co class n 1
112 91 111 92 co class 1 n 1
113 109 cv setvar i
114 113 97 cfv class h i
115 114 103 cfv class 2 nd h i
116 115 10 cfv class f 2 nd h i
117 caddc class +
118 113 91 117 co class i + 1
119 118 97 cfv class h i + 1
120 119 96 cfv class 1 st h i + 1
121 120 10 cfv class f 1 st h i + 1
122 116 121 wceq wff f 2 nd h i = f 1 st h i + 1
123 122 109 112 wral wff i 1 n 1 f 2 nd h i = f 1 st h i + 1
124 102 108 123 w3a wff f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1
125 124 88 95 crab class h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1
126 cxrs class 𝑠 *
127 cgsu class Σ𝑔
128 5 82 cfv class dist r
129 87 cv setvar g
130 128 129 ccom class dist r g
131 126 130 127 co class 𝑠 * dist r g
132 87 125 131 cmpt class g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g
133 132 crn class ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g
134 85 86 133 ciun class n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g
135 cxr class *
136 clt class <
137 134 135 136 cinf class sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
138 49 84 11 11 137 cmpo class x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
139 83 138 cop class dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
140 74 81 139 ctp class TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
141 67 140 cun class Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
142 7 6 141 csb class Base r / v Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
143 1 3 2 2 142 cmpo class f V , r V Base r / v Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <
144 0 143 wceq wff 𝑠 = f V , r V Base r / v Base ndx ran f + ndx p v q v f p f q f p + r q ndx p v q v f p f q f p r q Scalar ndx Scalar r ndx q v p Base Scalar r , x f q f p r q 𝑖 ndx p v q v f p f q p 𝑖 r q TopSet ndx TopOpen r qTop f ndx f r f -1 dist ndx x ran f , y ran f sup n ran g h v × v 1 n | f 1 st h 1 = x f 2 nd h n = y i 1 n 1 f 2 nd h i = f 1 st h i + 1 𝑠 * dist r g * <