Metamath Proof Explorer


Definition df-in

Description: Define the intersection of two classes. Definition 5.6 of TakeutiZaring p. 16. For example, ( { 1 , 3 } i^i { 1 , 8 } ) = { 1 } ( ex-in ). Contrast this operation with union ( A u. B ) ( df-un ) and difference ( A \ B ) ( df-dif ). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 and dfin4 . For intersection defined in terms of union, see dfin3 . (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion df-in A B = x | x A x B

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cB class B
2 0 1 cin class A B
3 vx setvar x
4 3 cv setvar x
5 4 0 wcel wff x A
6 4 1 wcel wff x B
7 5 6 wa wff x A x B
8 7 3 cab class x | x A x B
9 2 8 wceq wff A B = x | x A x B