Metamath Proof Explorer


Definition df-ina

Description: An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion df-ina Inacc = x | x cf x = x y x 𝒫 y x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cina class Inacc
1 vx setvar x
2 1 cv setvar x
3 c0 class
4 2 3 wne wff x
5 ccf class cf
6 2 5 cfv class cf x
7 6 2 wceq wff cf x = x
8 vy setvar y
9 8 cv setvar y
10 9 cpw class 𝒫 y
11 csdm class
12 10 2 11 wbr wff 𝒫 y x
13 12 8 2 wral wff y x 𝒫 y x
14 4 7 13 w3a wff x cf x = x y x 𝒫 y x
15 14 1 cab class x | x cf x = x y x 𝒫 y x
16 0 15 wceq wff Inacc = x | x cf x = x y x 𝒫 y x