Metamath Proof Explorer


Definition df-inr

Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022)

Ref Expression
Assertion df-inr inr = x V 1 𝑜 x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinr class inr
1 vx setvar x
2 cvv class V
3 c1o class 1 𝑜
4 1 cv setvar x
5 3 4 cop class 1 𝑜 x
6 1 2 5 cmpt class x V 1 𝑜 x
7 0 6 wceq wff inr = x V 1 𝑜 x