Metamath Proof Explorer


Definition df-ioc

Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006)

Ref Expression
Assertion df-ioc . = x * , y * z * | x < z z y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cioc class .
1 vx setvar x
2 cxr class *
3 vy setvar y
4 vz setvar z
5 1 cv setvar x
6 clt class <
7 4 cv setvar z
8 5 7 6 wbr wff x < z
9 cle class
10 3 cv setvar y
11 7 10 9 wbr wff z y
12 8 11 wa wff x < z z y
13 12 4 2 crab class z * | x < z z y
14 1 3 2 2 13 cmpo class x * , y * z * | x < z z y
15 0 14 wceq wff . = x * , y * z * | x < z z y