Metamath Proof Explorer


Definition df-ipo

Description: For any family of sets, define the poset of that family ordered by inclusion. See ipobas , ipolerval , and ipole for its contract.

EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015) (New usage is discouraged.)

Ref Expression
Assertion df-ipo toInc = f V x y | x y f x y / o Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x =

Detailed syntax breakdown

Step Hyp Ref Expression
0 cipo class toInc
1 vf setvar f
2 cvv class V
3 vx setvar x
4 vy setvar y
5 3 cv setvar x
6 4 cv setvar y
7 5 6 cpr class x y
8 1 cv setvar f
9 7 8 wss wff x y f
10 5 6 wss wff x y
11 9 10 wa wff x y f x y
12 11 3 4 copab class x y | x y f x y
13 vo setvar o
14 cbs class Base
15 cnx class ndx
16 15 14 cfv class Base ndx
17 16 8 cop class Base ndx f
18 cts class TopSet
19 15 18 cfv class TopSet ndx
20 cordt class ordTop
21 13 cv setvar o
22 21 20 cfv class ordTop o
23 19 22 cop class TopSet ndx ordTop o
24 17 23 cpr class Base ndx f TopSet ndx ordTop o
25 cple class le
26 15 25 cfv class ndx
27 26 21 cop class ndx o
28 coc class oc
29 15 28 cfv class oc ndx
30 6 5 cin class y x
31 c0 class
32 30 31 wceq wff y x =
33 32 4 8 crab class y f | y x =
34 33 cuni class y f | y x =
35 3 8 34 cmpt class x f y f | y x =
36 29 35 cop class oc ndx x f y f | y x =
37 27 36 cpr class ndx o oc ndx x f y f | y x =
38 24 37 cun class Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x =
39 13 12 38 csb class x y | x y f x y / o Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x =
40 1 2 39 cmpt class f V x y | x y f x y / o Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x =
41 0 40 wceq wff toInc = f V x y | x y f x y / o Base ndx f TopSet ndx ordTop o ndx o oc ndx x f y f | y x =