Metamath Proof Explorer


Definition df-irred

Description: Define the set of irreducible elements in a ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion df-irred Irred = w V Base w Unit w / b z b | x b y b x w y z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cir class Irred
1 vw setvar w
2 cvv class V
3 cbs class Base
4 1 cv setvar w
5 4 3 cfv class Base w
6 cui class Unit
7 4 6 cfv class Unit w
8 5 7 cdif class Base w Unit w
9 vb setvar b
10 vz setvar z
11 9 cv setvar b
12 vx setvar x
13 vy setvar y
14 12 cv setvar x
15 cmulr class 𝑟
16 4 15 cfv class w
17 13 cv setvar y
18 14 17 16 co class x w y
19 10 cv setvar z
20 18 19 wne wff x w y z
21 20 13 11 wral wff y b x w y z
22 21 12 11 wral wff x b y b x w y z
23 22 10 11 crab class z b | x b y b x w y z
24 9 8 23 csb class Base w Unit w / b z b | x b y b x w y z
25 1 2 24 cmpt class w V Base w Unit w / b z b | x b y b x w y z
26 0 25 wceq wff Irred = w V Base w Unit w / b z b | x b y b x w y z