Metamath Proof Explorer


Definition df-irred

Description: Define the set of irreducible elements in a ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion df-irred Irred=wVBasewUnitw/bzb|xbybxwyz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cir classIrred
1 vw setvarw
2 cvv classV
3 cbs classBase
4 1 cv setvarw
5 4 3 cfv classBasew
6 cui classUnit
7 4 6 cfv classUnitw
8 5 7 cdif classBasewUnitw
9 vb setvarb
10 vz setvarz
11 9 cv setvarb
12 vx setvarx
13 vy setvary
14 12 cv setvarx
15 cmulr class𝑟
16 4 15 cfv classw
17 13 cv setvary
18 14 17 16 co classxwy
19 10 cv setvarz
20 18 19 wne wffxwyz
21 20 13 11 wral wffybxwyz
22 21 12 11 wral wffxbybxwyz
23 22 10 11 crab classzb|xbybxwyz
24 9 8 23 csb classBasewUnitw/bzb|xbybxwyz
25 1 2 24 cmpt classwVBasewUnitw/bzb|xbybxwyz
26 0 25 wceq wffIrred=wVBasewUnitw/bzb|xbybxwyz