Metamath Proof Explorer


Definition df-itg

Description: Define the full Lebesgue integral, for complex-valued functions to RR . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of x ^ 2 from 0 to 1 is S. ( 0 , 1 ) ( x ^ 2 ) _d x = ( 1 / 3 ) . The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-itg A B dx = k = 0 3 i k 2 x B i k / y if x A 0 y y 0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cB class B
2 vx setvar x
3 2 0 1 citg class A B dx
4 vk setvar k
5 cc0 class 0
6 cfz class
7 c3 class 3
8 5 7 6 co class 0 3
9 ci class i
10 cexp class ^
11 4 cv setvar k
12 9 11 10 co class i k
13 cmul class ×
14 citg2 class 2
15 cr class
16 cre class
17 cdiv class ÷
18 1 12 17 co class B i k
19 18 16 cfv class B i k
20 vy setvar y
21 2 cv setvar x
22 21 0 wcel wff x A
23 cle class
24 20 cv setvar y
25 5 24 23 wbr wff 0 y
26 22 25 wa wff x A 0 y
27 26 24 5 cif class if x A 0 y y 0
28 20 19 27 csb class B i k / y if x A 0 y y 0
29 2 15 28 cmpt class x B i k / y if x A 0 y y 0
30 29 14 cfv class 2 x B i k / y if x A 0 y y 0
31 12 30 13 co class i k 2 x B i k / y if x A 0 y y 0
32 8 31 4 csu class k = 0 3 i k 2 x B i k / y if x A 0 y y 0
33 3 32 wceq wff A B dx = k = 0 3 i k 2 x B i k / y if x A 0 y y 0