Metamath Proof Explorer


Definition df-itg2

Description: Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +oo for functions that take the value +oo on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-itg2 2 = f 0 +∞ sup x | g dom 1 g f f x = 1 g * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 citg2 class 2
1 vf setvar f
2 cc0 class 0
3 cicc class .
4 cpnf class +∞
5 2 4 3 co class 0 +∞
6 cmap class 𝑚
7 cr class
8 5 7 6 co class 0 +∞
9 vx setvar x
10 vg setvar g
11 citg1 class 1
12 11 cdm class dom 1
13 10 cv setvar g
14 cle class
15 14 cofr class r
16 1 cv setvar f
17 13 16 15 wbr wff g f f
18 9 cv setvar x
19 13 11 cfv class 1 g
20 18 19 wceq wff x = 1 g
21 17 20 wa wff g f f x = 1 g
22 21 10 12 wrex wff g dom 1 g f f x = 1 g
23 22 9 cab class x | g dom 1 g f f x = 1 g
24 cxr class *
25 clt class <
26 23 24 25 csup class sup x | g dom 1 g f f x = 1 g * <
27 1 8 26 cmpt class f 0 +∞ sup x | g dom 1 g f f x = 1 g * <
28 0 27 wceq wff 2 = f 0 +∞ sup x | g dom 1 g f f x = 1 g * <