Database
BASIC TOPOLOGY
Topology
Compactly generated spaces
df-kgen
Metamath Proof Explorer
Description: Define the "compact generator", the functor from topological spaces to
compactly generated spaces. Also known as the k-ification operation. A
set is k-open, i.e. x e. ( kGen j ) , iff the preimage of x
is open in all compact Hausdorff spaces. (Contributed by Mario
Carneiro , 20-Mar-2015)
Ref
Expression
Assertion
df-kgen
⊢ 𝑘Gen = j ∈ Top ⟼ x ∈ 𝒫 ⋃ j | ∀ k ∈ 𝒫 ⋃ j j ↾ 𝑡 k ∈ Comp → x ∩ k ∈ j ↾ 𝑡 k
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ckgen
class 𝑘Gen
1
vj
setvar j
2
ctop
class Top
3
vx
setvar x
4
1
cv
setvar j
5
4
cuni
class ⋃ j
6
5
cpw
class 𝒫 ⋃ j
7
vk
setvar k
8
crest
class ↾ 𝑡
9
7
cv
setvar k
10
4 9 8
co
class j ↾ 𝑡 k
11
ccmp
class Comp
12
10 11
wcel
wff j ↾ 𝑡 k ∈ Comp
13
3
cv
setvar x
14
13 9
cin
class x ∩ k
15
14 10
wcel
wff x ∩ k ∈ j ↾ 𝑡 k
16
12 15
wi
wff j ↾ 𝑡 k ∈ Comp → x ∩ k ∈ j ↾ 𝑡 k
17
16 7 6
wral
wff ∀ k ∈ 𝒫 ⋃ j j ↾ 𝑡 k ∈ Comp → x ∩ k ∈ j ↾ 𝑡 k
18
17 3 6
crab
class x ∈ 𝒫 ⋃ j | ∀ k ∈ 𝒫 ⋃ j j ↾ 𝑡 k ∈ Comp → x ∩ k ∈ j ↾ 𝑡 k
19
1 2 18
cmpt
class j ∈ Top ⟼ x ∈ 𝒫 ⋃ j | ∀ k ∈ 𝒫 ⋃ j j ↾ 𝑡 k ∈ Comp → x ∩ k ∈ j ↾ 𝑡 k
20
0 19
wceq
wff 𝑘Gen = j ∈ Top ⟼ x ∈ 𝒫 ⋃ j | ∀ k ∈ 𝒫 ⋃ j j ↾ 𝑡 k ∈ Comp → x ∩ k ∈ j ↾ 𝑡 k