Database BASIC TOPOLOGY Topology Compactly generated spaces df-kgen  
				
		 
		
			
		 
		Description:   Define the "compact generator", the functor from topological spaces to
       compactly generated spaces.  Also known as the k-ification operation.  A
       set is k-open, i.e. x e. ( kGen j )  , iff the preimage of x 
       is open in all compact Hausdorff spaces.  (Contributed by Mario
       Carneiro , 20-Mar-2015) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-kgen   ⊢   𝑘Gen  =    j  ∈  Top  ⟼   x  ∈   𝒫   ⋃  j      |   ∀  k  ∈   𝒫   ⋃  j        j  ↾  𝑡 k ∈  Comp    →    x  ∩  k    ∈  j  ↾  𝑡 k                
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							ckgen  class  𝑘Gen    
						
							1 
								
							 
							vj  setvar  j    
						
							2 
								
							 
							ctop  class  Top    
						
							3 
								
							 
							vx  setvar  x    
						
							4 
								1 
							 
							cv  setvar  j    
						
							5 
								4 
							 
							cuni  class   ⋃  j      
						
							6 
								5 
							 
							cpw  class   𝒫   ⋃  j        
						
							7 
								
							 
							vk  setvar  k    
						
							8 
								
							 
							crest  class  ↾  𝑡    
						
							9 
								7 
							 
							cv  setvar  k    
						
							10 
								4  9  8 
							 
							co  class  j  ↾  𝑡 k    
						
							11 
								
							 
							ccmp  class  Comp    
						
							12 
								10  11 
							 
							wcel  wff   j  ↾  𝑡 k ∈  Comp      
						
							13 
								3 
							 
							cv  setvar  x    
						
							14 
								13  9 
							 
							cin  class   x  ∩  k      
						
							15 
								14  10 
							 
							wcel  wff    x  ∩  k    ∈  j  ↾  𝑡 k     
						
							16 
								12  15 
							 
							wi  wff    j  ↾  𝑡 k ∈  Comp    →    x  ∩  k    ∈  j  ↾  𝑡 k       
						
							17 
								16  7  6 
							 
							wral  wff   ∀  k  ∈   𝒫   ⋃  j        j  ↾  𝑡 k ∈  Comp    →    x  ∩  k    ∈  j  ↾  𝑡 k        
						
							18 
								17  3  6 
							 
							crab  class   x  ∈   𝒫   ⋃  j      |   ∀  k  ∈   𝒫   ⋃  j        j  ↾  𝑡 k ∈  Comp    →    x  ∩  k    ∈  j  ↾  𝑡 k          
						
							19 
								1  2  18 
							 
							cmpt  class    j  ∈  Top  ⟼   x  ∈   𝒫   ⋃  j      |   ∀  k  ∈   𝒫   ⋃  j        j  ↾  𝑡 k ∈  Comp    →    x  ∩  k    ∈  j  ↾  𝑡 k             
						
							20 
								0  19 
							 
							wceq  wff   𝑘Gen  =    j  ∈  Top  ⟼   x  ∈   𝒫   ⋃  j      |   ∀  k  ∈   𝒫   ⋃  j        j  ↾  𝑡 k ∈  Comp    →    x  ∩  k    ∈  j  ↾  𝑡 k