Metamath Proof Explorer


Definition df-kgen

Description: Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. x e. ( kGenj ) , iff the preimage of x is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion df-kgen 𝑘Gen = j Top x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k

Detailed syntax breakdown

Step Hyp Ref Expression
0 ckgen class 𝑘Gen
1 vj setvar j
2 ctop class Top
3 vx setvar x
4 1 cv setvar j
5 4 cuni class j
6 5 cpw class 𝒫 j
7 vk setvar k
8 crest class 𝑡
9 7 cv setvar k
10 4 9 8 co class j 𝑡 k
11 ccmp class Comp
12 10 11 wcel wff j 𝑡 k Comp
13 3 cv setvar x
14 13 9 cin class x k
15 14 10 wcel wff x k j 𝑡 k
16 12 15 wi wff j 𝑡 k Comp x k j 𝑡 k
17 16 7 6 wral wff k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
18 17 3 6 crab class x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
19 1 2 18 cmpt class j Top x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
20 0 19 wceq wff 𝑘Gen = j Top x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k