Metamath Proof Explorer


Definition df-lcm

Description: Define the lcm operator. For example, ( 6 lcm 9 ) = 1 8 ( ex-lcm ). (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion df-lcm lcm = x , y if x = 0 y = 0 0 sup n | x n y n <

Detailed syntax breakdown

Step Hyp Ref Expression
0 clcm class lcm
1 vx setvar x
2 cz class
3 vy setvar y
4 1 cv setvar x
5 cc0 class 0
6 4 5 wceq wff x = 0
7 3 cv setvar y
8 7 5 wceq wff y = 0
9 6 8 wo wff x = 0 y = 0
10 vn setvar n
11 cn class
12 cdvds class
13 10 cv setvar n
14 4 13 12 wbr wff x n
15 7 13 12 wbr wff y n
16 14 15 wa wff x n y n
17 16 10 11 crab class n | x n y n
18 cr class
19 clt class <
20 17 18 19 cinf class sup n | x n y n <
21 9 5 20 cif class if x = 0 y = 0 0 sup n | x n y n <
22 1 3 2 2 21 cmpo class x , y if x = 0 y = 0 0 sup n | x n y n <
23 0 22 wceq wff lcm = x , y if x = 0 y = 0 0 sup n | x n y n <