Metamath Proof Explorer


Definition df-lcmf

Description: Define the _lcm function on a set of integers. (Contributed by AV, 21-Aug-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion df-lcmf lcm _ = z 𝒫 if 0 z 0 sup n | m z m n <

Detailed syntax breakdown

Step Hyp Ref Expression
0 clcmf class lcm _
1 vz setvar z
2 cz class
3 2 cpw class 𝒫
4 cc0 class 0
5 1 cv setvar z
6 4 5 wcel wff 0 z
7 vn setvar n
8 cn class
9 vm setvar m
10 9 cv setvar m
11 cdvds class
12 7 cv setvar n
13 10 12 11 wbr wff m n
14 13 9 5 wral wff m z m n
15 14 7 8 crab class n | m z m n
16 cr class
17 clt class <
18 15 16 17 cinf class sup n | m z m n <
19 6 4 18 cif class if 0 z 0 sup n | m z m n <
20 1 3 19 cmpt class z 𝒫 if 0 z 0 sup n | m z m n <
21 0 20 wceq wff lcm _ = z 𝒫 if 0 z 0 sup n | m z m n <