Metamath Proof Explorer


Definition df-leg

Description: Define the less-than relationship between geometric distance congruence classes. See legval . (Contributed by Thierry Arnoux, 21-Jun-2019)

Ref Expression
Assertion df-leg 𝒢 = g V e f | [˙Base g / p]˙ [˙ dist g / d]˙ [˙ Itv g / i]˙ x p y p f = x d y z p z x i y e = x d z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleg class 𝒢
1 vg setvar g
2 cvv class V
3 ve setvar e
4 vf setvar f
5 cbs class Base
6 1 cv setvar g
7 6 5 cfv class Base g
8 vp setvar p
9 cds class dist
10 6 9 cfv class dist g
11 vd setvar d
12 citv class Itv
13 6 12 cfv class Itv g
14 vi setvar i
15 vx setvar x
16 8 cv setvar p
17 vy setvar y
18 4 cv setvar f
19 15 cv setvar x
20 11 cv setvar d
21 17 cv setvar y
22 19 21 20 co class x d y
23 18 22 wceq wff f = x d y
24 vz setvar z
25 24 cv setvar z
26 14 cv setvar i
27 19 21 26 co class x i y
28 25 27 wcel wff z x i y
29 3 cv setvar e
30 19 25 20 co class x d z
31 29 30 wceq wff e = x d z
32 28 31 wa wff z x i y e = x d z
33 32 24 16 wrex wff z p z x i y e = x d z
34 23 33 wa wff f = x d y z p z x i y e = x d z
35 34 17 16 wrex wff y p f = x d y z p z x i y e = x d z
36 35 15 16 wrex wff x p y p f = x d y z p z x i y e = x d z
37 36 14 13 wsbc wff [˙ Itv g / i]˙ x p y p f = x d y z p z x i y e = x d z
38 37 11 10 wsbc wff [˙ dist g / d]˙ [˙ Itv g / i]˙ x p y p f = x d y z p z x i y e = x d z
39 38 8 7 wsbc wff [˙Base g / p]˙ [˙ dist g / d]˙ [˙ Itv g / i]˙ x p y p f = x d y z p z x i y e = x d z
40 39 3 4 copab class e f | [˙Base g / p]˙ [˙ dist g / d]˙ [˙ Itv g / i]˙ x p y p f = x d y z p z x i y e = x d z
41 1 2 40 cmpt class g V e f | [˙Base g / p]˙ [˙ dist g / d]˙ [˙ Itv g / i]˙ x p y p f = x d y z p z x i y e = x d z
42 0 41 wceq wff 𝒢 = g V e f | [˙Base g / p]˙ [˙ dist g / d]˙ [˙ Itv g / i]˙ x p y p f = x d y z p z x i y e = x d z