Metamath Proof Explorer


Definition df-lhyp

Description: Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-lhyp LHyp = k V x Base k | x k 1. k

Detailed syntax breakdown

Step Hyp Ref Expression
0 clh class LHyp
1 vk setvar k
2 cvv class V
3 vx setvar x
4 cbs class Base
5 1 cv setvar k
6 5 4 cfv class Base k
7 3 cv setvar x
8 ccvr class
9 5 8 cfv class k
10 cp1 class 1.
11 5 10 cfv class 1. k
12 7 11 9 wbr wff x k 1. k
13 12 3 6 crab class x Base k | x k 1. k
14 1 2 13 cmpt class k V x Base k | x k 1. k
15 0 14 wceq wff LHyp = k V x Base k | x k 1. k