Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
df-lhyp
Metamath Proof Explorer
Description: Define the set of lattice hyperplanes, which are all lattice elements
covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead
of "co-atoms" in analogy with projective geometry hyperplanes.
(Contributed by NM , 11-May-2012)
Ref
Expression
Assertion
df-lhyp
⊢ LHyp = k ∈ V ⟼ x ∈ Base k | x ⋖ k 1. ⁡ k
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
clh
class LHyp
1
vk
setvar k
2
cvv
class V
3
vx
setvar x
4
cbs
class Base
5
1
cv
setvar k
6
5 4
cfv
class Base k
7
3
cv
setvar x
8
ccvr
class ⋖
9
5 8
cfv
class ⋖ k
10
cp1
class 1.
11
5 10
cfv
class 1. ⁡ k
12
7 11 9
wbr
wff x ⋖ k 1. ⁡ k
13
12 3 6
crab
class x ∈ Base k | x ⋖ k 1. ⁡ k
14
1 2 13
cmpt
class k ∈ V ⟼ x ∈ Base k | x ⋖ k 1. ⁡ k
15
0 14
wceq
wff LHyp = k ∈ V ⟼ x ∈ Base k | x ⋖ k 1. ⁡ k