Metamath Proof Explorer


Definition df-limsup

Description: Define the superior limit of an infinite sequence of extended real numbers. Definition 12-4.1 of Gleason p. 175. See limsupval for its value. (Contributed by NM, 26-Oct-2005) (Revised by AV, 11-Sep-2020)

Ref Expression
Assertion df-limsup lim sup = x V sup ran k sup x k +∞ * * < * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 clsp class lim sup
1 vx setvar x
2 cvv class V
3 vk setvar k
4 cr class
5 1 cv setvar x
6 3 cv setvar k
7 cico class .
8 cpnf class +∞
9 6 8 7 co class k +∞
10 5 9 cima class x k +∞
11 cxr class *
12 10 11 cin class x k +∞ *
13 clt class <
14 12 11 13 csup class sup x k +∞ * * <
15 3 4 14 cmpt class k sup x k +∞ * * <
16 15 crn class ran k sup x k +∞ * * <
17 16 11 13 cinf class sup ran k sup x k +∞ * * < * <
18 1 2 17 cmpt class x V sup ran k sup x k +∞ * * < * <
19 0 18 wceq wff lim sup = x V sup ran k sup x k +∞ * * < * <