Metamath Proof Explorer


Definition df-lines

Description: Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of Holland95 p. 222. (Contributed by NM, 19-Sep-2011)

Ref Expression
Assertion df-lines Lines = k V s | q Atoms k r Atoms k q r s = p Atoms k | p k q join k r

Detailed syntax breakdown

Step Hyp Ref Expression
0 clines class Lines
1 vk setvar k
2 cvv class V
3 vs setvar s
4 vq setvar q
5 catm class Atoms
6 1 cv setvar k
7 6 5 cfv class Atoms k
8 vr setvar r
9 4 cv setvar q
10 8 cv setvar r
11 9 10 wne wff q r
12 3 cv setvar s
13 vp setvar p
14 13 cv setvar p
15 cple class le
16 6 15 cfv class k
17 cjn class join
18 6 17 cfv class join k
19 9 10 18 co class q join k r
20 14 19 16 wbr wff p k q join k r
21 20 13 7 crab class p Atoms k | p k q join k r
22 12 21 wceq wff s = p Atoms k | p k q join k r
23 11 22 wa wff q r s = p Atoms k | p k q join k r
24 23 8 7 wrex wff r Atoms k q r s = p Atoms k | p k q join k r
25 24 4 7 wrex wff q Atoms k r Atoms k q r s = p Atoms k | p k q join k r
26 25 3 cab class s | q Atoms k r Atoms k q r s = p Atoms k | p k q join k r
27 1 2 26 cmpt class k V s | q Atoms k r Atoms k q r s = p Atoms k | p k q join k r
28 0 27 wceq wff Lines = k V s | q Atoms k r Atoms k q r s = p Atoms k | p k q join k r