Database
BASIC TOPOLOGY
Topology
Local topological properties
df-lly
Metamath Proof Explorer
Description: Define a space that is locally A , where A is a topological
property like "compact", "connected", or "path-connected". A
topological space is locally A if every neighborhood of a point
contains an open subneighborhood that is A in the subspace topology.
(Contributed by Mario Carneiro , 2-Mar-2015)
Ref
Expression
Assertion
df-lly
⊢ Locally A = j ∈ Top | ∀ x ∈ j ∀ y ∈ x ∃ u ∈ j ∩ 𝒫 x y ∈ u ∧ j ↾ 𝑡 u ∈ A
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
class A
1
0
clly
class Locally A
2
vj
setvar j
3
ctop
class Top
4
vx
setvar x
5
2
cv
setvar j
6
vy
setvar y
7
4
cv
setvar x
8
vu
setvar u
9
7
cpw
class 𝒫 x
10
5 9
cin
class j ∩ 𝒫 x
11
6
cv
setvar y
12
8
cv
setvar u
13
11 12
wcel
wff y ∈ u
14
crest
class ↾ 𝑡
15
5 12 14
co
class j ↾ 𝑡 u
16
15 0
wcel
wff j ↾ 𝑡 u ∈ A
17
13 16
wa
wff y ∈ u ∧ j ↾ 𝑡 u ∈ A
18
17 8 10
wrex
wff ∃ u ∈ j ∩ 𝒫 x y ∈ u ∧ j ↾ 𝑡 u ∈ A
19
18 6 7
wral
wff ∀ y ∈ x ∃ u ∈ j ∩ 𝒫 x y ∈ u ∧ j ↾ 𝑡 u ∈ A
20
19 4 5
wral
wff ∀ x ∈ j ∀ y ∈ x ∃ u ∈ j ∩ 𝒫 x y ∈ u ∧ j ↾ 𝑡 u ∈ A
21
20 2 3
crab
class j ∈ Top | ∀ x ∈ j ∀ y ∈ x ∃ u ∈ j ∩ 𝒫 x y ∈ u ∧ j ↾ 𝑡 u ∈ A
22
1 21
wceq
wff Locally A = j ∈ Top | ∀ x ∈ j ∀ y ∈ x ∃ u ∈ j ∩ 𝒫 x y ∈ u ∧ j ↾ 𝑡 u ∈ A