Metamath Proof Explorer


Definition df-lly

Description: Define a space that is locally A , where A is a topological property like "compact", "connected", or "path-connected". A topological space is locally A if every neighborhood of a point contains an open subneighborhood that is A in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion df-lly Locally A = j Top | x j y x u j 𝒫 x y u j 𝑡 u A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 0 clly class Locally A
2 vj setvar j
3 ctop class Top
4 vx setvar x
5 2 cv setvar j
6 vy setvar y
7 4 cv setvar x
8 vu setvar u
9 7 cpw class 𝒫 x
10 5 9 cin class j 𝒫 x
11 6 cv setvar y
12 8 cv setvar u
13 11 12 wcel wff y u
14 crest class 𝑡
15 5 12 14 co class j 𝑡 u
16 15 0 wcel wff j 𝑡 u A
17 13 16 wa wff y u j 𝑡 u A
18 17 8 10 wrex wff u j 𝒫 x y u j 𝑡 u A
19 18 6 7 wral wff y x u j 𝒫 x y u j 𝑡 u A
20 19 4 5 wral wff x j y x u j 𝒫 x y u j 𝑡 u A
21 20 2 3 crab class j Top | x j y x u j 𝒫 x y u j 𝑡 u A
22 1 21 wceq wff Locally A = j Top | x j y x u j 𝒫 x y u j 𝑡 u A