Metamath Proof Explorer


Definition df-lm

Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function ( x e. RR |-> ( sin( _pi x. x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006)

Ref Expression
Assertion df-lm t = j Top f x | f j 𝑝𝑚 x j u j x u y ran f y : y u

Detailed syntax breakdown

Step Hyp Ref Expression
0 clm class t
1 vj setvar j
2 ctop class Top
3 vf setvar f
4 vx setvar x
5 3 cv setvar f
6 1 cv setvar j
7 6 cuni class j
8 cpm class 𝑝𝑚
9 cc class
10 7 9 8 co class j 𝑝𝑚
11 5 10 wcel wff f j 𝑝𝑚
12 4 cv setvar x
13 12 7 wcel wff x j
14 vu setvar u
15 14 cv setvar u
16 12 15 wcel wff x u
17 vy setvar y
18 cuz class
19 18 crn class ran
20 17 cv setvar y
21 5 20 cres class f y
22 20 15 21 wf wff f y : y u
23 22 17 19 wrex wff y ran f y : y u
24 16 23 wi wff x u y ran f y : y u
25 24 14 6 wral wff u j x u y ran f y : y u
26 11 13 25 w3a wff f j 𝑝𝑚 x j u j x u y ran f y : y u
27 26 3 4 copab class f x | f j 𝑝𝑚 x j u j x u y ran f y : y u
28 1 2 27 cmpt class j Top f x | f j 𝑝𝑚 x j u j x u y ran f y : y u
29 0 28 wceq wff t = j Top f x | f j 𝑝𝑚 x j u j x u y ran f y : y u