Metamath Proof Explorer


Definition df-lmod

Description: Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013)

Ref Expression
Assertion df-lmod LMod = g Grp | [˙Base g / v]˙ [˙+ g / a]˙ [˙ Scalar g / f]˙ [˙ g / s]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmod class LMod
1 vg setvar g
2 cgrp class Grp
3 cbs class Base
4 1 cv setvar g
5 4 3 cfv class Base g
6 vv setvar v
7 cplusg class + 𝑔
8 4 7 cfv class + g
9 va setvar a
10 csca class Scalar
11 4 10 cfv class Scalar g
12 vf setvar f
13 cvsca class 𝑠
14 4 13 cfv class g
15 vs setvar s
16 12 cv setvar f
17 16 3 cfv class Base f
18 vk setvar k
19 16 7 cfv class + f
20 vp setvar p
21 cmulr class 𝑟
22 16 21 cfv class f
23 vt setvar t
24 crg class Ring
25 16 24 wcel wff f Ring
26 vq setvar q
27 18 cv setvar k
28 vr setvar r
29 vx setvar x
30 6 cv setvar v
31 vw setvar w
32 28 cv setvar r
33 15 cv setvar s
34 31 cv setvar w
35 32 34 33 co class r s w
36 35 30 wcel wff r s w v
37 9 cv setvar a
38 29 cv setvar x
39 34 38 37 co class w a x
40 32 39 33 co class r s w a x
41 32 38 33 co class r s x
42 35 41 37 co class r s w a r s x
43 40 42 wceq wff r s w a x = r s w a r s x
44 26 cv setvar q
45 20 cv setvar p
46 44 32 45 co class q p r
47 46 34 33 co class q p r s w
48 44 34 33 co class q s w
49 48 35 37 co class q s w a r s w
50 47 49 wceq wff q p r s w = q s w a r s w
51 36 43 50 w3a wff r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w
52 23 cv setvar t
53 44 32 52 co class q t r
54 53 34 33 co class q t r s w
55 44 35 33 co class q s r s w
56 54 55 wceq wff q t r s w = q s r s w
57 cur class 1 r
58 16 57 cfv class 1 f
59 58 34 33 co class 1 f s w
60 59 34 wceq wff 1 f s w = w
61 56 60 wa wff q t r s w = q s r s w 1 f s w = w
62 51 61 wa wff r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
63 62 31 30 wral wff w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
64 63 29 30 wral wff x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
65 64 28 27 wral wff r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
66 65 26 27 wral wff q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
67 25 66 wa wff f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
68 67 23 22 wsbc wff [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
69 68 20 19 wsbc wff [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
70 69 18 17 wsbc wff [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
71 70 15 14 wsbc wff [˙ g / s]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
72 71 12 11 wsbc wff [˙ Scalar g / f]˙ [˙ g / s]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
73 72 9 8 wsbc wff [˙+ g / a]˙ [˙ Scalar g / f]˙ [˙ g / s]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
74 73 6 5 wsbc wff [˙Base g / v]˙ [˙+ g / a]˙ [˙ Scalar g / f]˙ [˙ g / s]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
75 74 1 2 crab class g Grp | [˙Base g / v]˙ [˙+ g / a]˙ [˙ Scalar g / f]˙ [˙ g / s]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w
76 0 75 wceq wff LMod = g Grp | [˙Base g / v]˙ [˙+ g / a]˙ [˙ Scalar g / f]˙ [˙ g / s]˙ [˙Base f / k]˙ [˙+ f / p]˙ [˙ f / t]˙ f Ring q k r k x v w v r s w v r s w a x = r s w a r s x q p r s w = q s w a r s w q t r s w = q s r s w 1 f s w = w