Metamath Proof Explorer


Definition df-lnfn

Description: Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-lnfn LinFn = t | x y z t x y + z = x t y + t z

Detailed syntax breakdown

Step Hyp Ref Expression
0 clf class LinFn
1 vt setvar t
2 cc class
3 cmap class 𝑚
4 chba class
5 2 4 3 co class
6 vx setvar x
7 vy setvar y
8 vz setvar z
9 1 cv setvar t
10 6 cv setvar x
11 csm class
12 7 cv setvar y
13 10 12 11 co class x y
14 cva class +
15 8 cv setvar z
16 13 15 14 co class x y + z
17 16 9 cfv class t x y + z
18 cmul class ×
19 12 9 cfv class t y
20 10 19 18 co class x t y
21 caddc class +
22 15 9 cfv class t z
23 20 22 21 co class x t y + t z
24 17 23 wceq wff t x y + z = x t y + t z
25 24 8 4 wral wff z t x y + z = x t y + t z
26 25 7 4 wral wff y z t x y + z = x t y + t z
27 26 6 2 wral wff x y z t x y + z = x t y + t z
28 27 1 5 crab class t | x y z t x y + z = x t y + t z
29 0 28 wceq wff LinFn = t | x y z t x y + z = x t y + t z