Metamath Proof Explorer


Definition df-lnop

Description: Define the set of linear operators on Hilbert space. (See df-hosum for definition of operator.) (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-lnop LinOp = t | x y z t x y + z = x t y + t z

Detailed syntax breakdown

Step Hyp Ref Expression
0 clo class LinOp
1 vt setvar t
2 chba class
3 cmap class 𝑚
4 2 2 3 co class
5 vx setvar x
6 cc class
7 vy setvar y
8 vz setvar z
9 1 cv setvar t
10 5 cv setvar x
11 csm class
12 7 cv setvar y
13 10 12 11 co class x y
14 cva class +
15 8 cv setvar z
16 13 15 14 co class x y + z
17 16 9 cfv class t x y + z
18 12 9 cfv class t y
19 10 18 11 co class x t y
20 15 9 cfv class t z
21 19 20 14 co class x t y + t z
22 17 21 wceq wff t x y + z = x t y + t z
23 22 8 2 wral wff z t x y + z = x t y + t z
24 23 7 2 wral wff y z t x y + z = x t y + t z
25 24 5 6 wral wff x y z t x y + z = x t y + t z
26 25 1 4 crab class t | x y z t x y + z = x t y + t z
27 0 26 wceq wff LinOp = t | x y z t x y + z = x t y + t z