Metamath Proof Explorer


Definition df-lo1

Description: Define the set of eventually upper bounded real functions. This fills a gap in O(1) coverage, to express statements like f ( x ) <_ g ( x ) + O ( x ) via ( x e. RR+ |-> ( f ( x ) - g ( x ) ) / x ) e. <_O(1) . (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Assertion df-lo1 𝑂1 = f 𝑝𝑚 | x m y dom f x +∞ f y m

Detailed syntax breakdown

Step Hyp Ref Expression
0 clo1 class 𝑂1
1 vf setvar f
2 cr class
3 cpm class 𝑝𝑚
4 2 2 3 co class 𝑝𝑚
5 vx setvar x
6 vm setvar m
7 vy setvar y
8 1 cv setvar f
9 8 cdm class dom f
10 5 cv setvar x
11 cico class .
12 cpnf class +∞
13 10 12 11 co class x +∞
14 9 13 cin class dom f x +∞
15 7 cv setvar y
16 15 8 cfv class f y
17 cle class
18 6 cv setvar m
19 16 18 17 wbr wff f y m
20 19 7 14 wral wff y dom f x +∞ f y m
21 20 6 2 wrex wff m y dom f x +∞ f y m
22 21 5 2 wrex wff x m y dom f x +∞ f y m
23 22 1 4 crab class f 𝑝𝑚 | x m y dom f x +∞ f y m
24 0 23 wceq wff 𝑂1 = f 𝑝𝑚 | x m y dom f x +∞ f y m