Metamath Proof Explorer


Definition df-lsp

Description: Define span of a set of vectors of a left module or left vector space. (Contributed by NM, 8-Dec-2013)

Ref Expression
Assertion df-lsp LSpan = w V s 𝒫 Base w t LSubSp w | s t

Detailed syntax breakdown

Step Hyp Ref Expression
0 clspn class LSpan
1 vw setvar w
2 cvv class V
3 vs setvar s
4 cbs class Base
5 1 cv setvar w
6 5 4 cfv class Base w
7 6 cpw class 𝒫 Base w
8 vt setvar t
9 clss class LSubSp
10 5 9 cfv class LSubSp w
11 3 cv setvar s
12 8 cv setvar t
13 11 12 wss wff s t
14 13 8 10 crab class t LSubSp w | s t
15 14 cint class t LSubSp w | s t
16 3 7 15 cmpt class s 𝒫 Base w t LSubSp w | s t
17 1 2 16 cmpt class w V s 𝒫 Base w t LSubSp w | s t
18 0 17 wceq wff LSpan = w V s 𝒫 Base w t LSubSp w | s t