Metamath Proof Explorer


Definition df-lss

Description: Define the set of linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013)

Ref Expression
Assertion df-lss LSubSp = w V s 𝒫 Base w | x Base Scalar w a s b s x w a + w b s

Detailed syntax breakdown

Step Hyp Ref Expression
0 clss class LSubSp
1 vw setvar w
2 cvv class V
3 vs setvar s
4 cbs class Base
5 1 cv setvar w
6 5 4 cfv class Base w
7 6 cpw class 𝒫 Base w
8 c0 class
9 8 csn class
10 7 9 cdif class 𝒫 Base w
11 vx setvar x
12 csca class Scalar
13 5 12 cfv class Scalar w
14 13 4 cfv class Base Scalar w
15 va setvar a
16 3 cv setvar s
17 vb setvar b
18 11 cv setvar x
19 cvsca class 𝑠
20 5 19 cfv class w
21 15 cv setvar a
22 18 21 20 co class x w a
23 cplusg class + 𝑔
24 5 23 cfv class + w
25 17 cv setvar b
26 22 25 24 co class x w a + w b
27 26 16 wcel wff x w a + w b s
28 27 17 16 wral wff b s x w a + w b s
29 28 15 16 wral wff a s b s x w a + w b s
30 29 11 14 wral wff x Base Scalar w a s b s x w a + w b s
31 30 3 10 crab class s 𝒫 Base w | x Base Scalar w a s b s x w a + w b s
32 1 2 31 cmpt class w V s 𝒫 Base w | x Base Scalar w a s b s x w a + w b s
33 0 32 wceq wff LSubSp = w V s 𝒫 Base w | x Base Scalar w a s b s x w a + w b s