Metamath Proof Explorer


Definition df-lt

Description: Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr . (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion df-lt < = x y | x y z w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltrr class <
1 vx setvar x
2 vy setvar y
3 1 cv setvar x
4 cr class
5 3 4 wcel wff x
6 2 cv setvar y
7 6 4 wcel wff y
8 5 7 wa wff x y
9 vz setvar z
10 vw setvar w
11 9 cv setvar z
12 c0r class 0 𝑹
13 11 12 cop class z 0 𝑹
14 3 13 wceq wff x = z 0 𝑹
15 10 cv setvar w
16 15 12 cop class w 0 𝑹
17 6 16 wceq wff y = w 0 𝑹
18 14 17 wa wff x = z 0 𝑹 y = w 0 𝑹
19 cltr class < 𝑹
20 11 15 19 wbr wff z < 𝑹 w
21 18 20 wa wff x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w
22 21 10 wex wff w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w
23 22 9 wex wff z w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w
24 8 23 wa wff x y z w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w
25 24 1 2 copab class x y | x y z w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w
26 0 25 wceq wff < = x y | x y z w x = z 0 𝑹 y = w 0 𝑹 z < 𝑹 w