Metamath Proof Explorer


Definition df-ltbag

Description: Define a well-order on the set of all finite bags from the index set i given a wellordering r of i . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion df-ltbag < bag = r V , i V x y | x y h 0 i | h -1 Fin z i x z < y z w i z r w x w = y w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltb class < bag
1 vr setvar r
2 cvv class V
3 vi setvar i
4 vx setvar x
5 vy setvar y
6 4 cv setvar x
7 5 cv setvar y
8 6 7 cpr class x y
9 vh setvar h
10 cn0 class 0
11 cmap class 𝑚
12 3 cv setvar i
13 10 12 11 co class 0 i
14 9 cv setvar h
15 14 ccnv class h -1
16 cn class
17 15 16 cima class h -1
18 cfn class Fin
19 17 18 wcel wff h -1 Fin
20 19 9 13 crab class h 0 i | h -1 Fin
21 8 20 wss wff x y h 0 i | h -1 Fin
22 vz setvar z
23 22 cv setvar z
24 23 6 cfv class x z
25 clt class <
26 23 7 cfv class y z
27 24 26 25 wbr wff x z < y z
28 vw setvar w
29 1 cv setvar r
30 28 cv setvar w
31 23 30 29 wbr wff z r w
32 30 6 cfv class x w
33 30 7 cfv class y w
34 32 33 wceq wff x w = y w
35 31 34 wi wff z r w x w = y w
36 35 28 12 wral wff w i z r w x w = y w
37 27 36 wa wff x z < y z w i z r w x w = y w
38 37 22 12 wrex wff z i x z < y z w i z r w x w = y w
39 21 38 wa wff x y h 0 i | h -1 Fin z i x z < y z w i z r w x w = y w
40 39 4 5 copab class x y | x y h 0 i | h -1 Fin z i x z < y z w i z r w x w = y w
41 1 3 2 2 40 cmpo class r V , i V x y | x y h 0 i | h -1 Fin z i x z < y z w i z r w x w = y w
42 0 41 wceq wff < bag = r V , i V x y | x y h 0 i | h -1 Fin z i x z < y z w i z r w x w = y w