Metamath Proof Explorer


Definition df-ltrn

Description: Define set of all lattice translations. Similar to definition of translation in Crawley p. 111. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-ltrn LTrn = k V w LHyp k f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltrn class LTrn
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 vf setvar f
8 cldil class LDil
9 5 8 cfv class LDil k
10 3 cv setvar w
11 10 9 cfv class LDil k w
12 vp setvar p
13 catm class Atoms
14 5 13 cfv class Atoms k
15 vq setvar q
16 12 cv setvar p
17 cple class le
18 5 17 cfv class k
19 16 10 18 wbr wff p k w
20 19 wn wff ¬ p k w
21 15 cv setvar q
22 21 10 18 wbr wff q k w
23 22 wn wff ¬ q k w
24 20 23 wa wff ¬ p k w ¬ q k w
25 cjn class join
26 5 25 cfv class join k
27 7 cv setvar f
28 16 27 cfv class f p
29 16 28 26 co class p join k f p
30 cmee class meet
31 5 30 cfv class meet k
32 29 10 31 co class p join k f p meet k w
33 21 27 cfv class f q
34 21 33 26 co class q join k f q
35 34 10 31 co class q join k f q meet k w
36 32 35 wceq wff p join k f p meet k w = q join k f q meet k w
37 24 36 wi wff ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w
38 37 15 14 wral wff q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w
39 38 12 14 wral wff p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w
40 39 7 11 crab class f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w
41 3 6 40 cmpt class w LHyp k f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w
42 1 2 41 cmpt class k V w LHyp k f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w
43 0 42 wceq wff LTrn = k V w LHyp k f LDil k w | p Atoms k q Atoms k ¬ p k w ¬ q k w p join k f p meet k w = q join k f q meet k w