Metamath Proof Explorer


Definition df-mbf

Description: Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl ) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion df-mbf MblFn = f 𝑝𝑚 | x ran . f -1 x dom vol f -1 x dom vol

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmbf class MblFn
1 vf setvar f
2 cc class
3 cpm class 𝑝𝑚
4 cr class
5 2 4 3 co class 𝑝𝑚
6 vx setvar x
7 cioo class .
8 7 crn class ran .
9 cre class
10 1 cv setvar f
11 9 10 ccom class f
12 11 ccnv class f -1
13 6 cv setvar x
14 12 13 cima class f -1 x
15 cvol class vol
16 15 cdm class dom vol
17 14 16 wcel wff f -1 x dom vol
18 cim class
19 18 10 ccom class f
20 19 ccnv class f -1
21 20 13 cima class f -1 x
22 21 16 wcel wff f -1 x dom vol
23 17 22 wa wff f -1 x dom vol f -1 x dom vol
24 23 6 8 wral wff x ran . f -1 x dom vol f -1 x dom vol
25 24 1 5 crab class f 𝑝𝑚 | x ran . f -1 x dom vol f -1 x dom vol
26 0 25 wceq wff MblFn = f 𝑝𝑚 | x ran . f -1 x dom vol f -1 x dom vol