Metamath Proof Explorer


Definition df-mdeg

Description: Define the degree of a polynomial. Note (SO): as an experiment I am using a definition which makes the degree of the zero polynomial -oo , contrary to the convention used in df-dgr . (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Assertion df-mdeg mDeg = i V , r V f Base i mPoly r sup ran h supp 0 r f fld h * <

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdg class mDeg
1 vi setvar i
2 cvv class V
3 vr setvar r
4 vf setvar f
5 cbs class Base
6 1 cv setvar i
7 cmpl class mPoly
8 3 cv setvar r
9 6 8 7 co class i mPoly r
10 9 5 cfv class Base i mPoly r
11 vh setvar h
12 4 cv setvar f
13 csupp class supp
14 c0g class 0 𝑔
15 8 14 cfv class 0 r
16 12 15 13 co class supp 0 r f
17 ccnfld class fld
18 cgsu class Σ𝑔
19 11 cv setvar h
20 17 19 18 co class fld h
21 11 16 20 cmpt class h supp 0 r f fld h
22 21 crn class ran h supp 0 r f fld h
23 cxr class *
24 clt class <
25 22 23 24 csup class sup ran h supp 0 r f fld h * <
26 4 10 25 cmpt class f Base i mPoly r sup ran h supp 0 r f fld h * <
27 1 3 2 2 26 cmpo class i V , r V f Base i mPoly r sup ran h supp 0 r f fld h * <
28 0 27 wceq wff mDeg = i V , r V f Base i mPoly r sup ran h supp 0 r f fld h * <