Metamath Proof Explorer


Definition df-mdet

Description: Determinant of a square matrix. This definition is based on Leibniz' Formula (see mdetleib ). The properties of the axiomatic definition of a determinant according to Weierstrass p. 272 are derived from this definition as theorems: "The determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring". Functionality is shown by mdetf . Multilineary means "linear for each row" - the additivity is shown by mdetrlin , the homogeneity by mdetrsca . Furthermore, it is shown that the determinant function is alternating (see mdetralt ) and normalized (see mdet1 ). Finally, uniqueness is shown by mdetuni . As a consequence, the "determinant of a square matrix" is the function value of the determinant function for this square matrix, see mdetleib . (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by SO, 10-Jul-2018)

Ref Expression
Assertion df-mdet maDet=nV,rVmBasenMatrrpBaseSymGrpnℤRHomrpmSgnnprmulGrprxnpxmx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmdat classmaDet
1 vn setvarn
2 cvv classV
3 vr setvarr
4 vm setvarm
5 cbs classBase
6 1 cv setvarn
7 cmat classMat
8 3 cv setvarr
9 6 8 7 co classnMatr
10 9 5 cfv classBasenMatr
11 cgsu classΣ𝑔
12 vp setvarp
13 csymg classSymGrp
14 6 13 cfv classSymGrpn
15 14 5 cfv classBaseSymGrpn
16 czrh classℤRHom
17 8 16 cfv classℤRHomr
18 cpsgn classpmSgn
19 6 18 cfv classpmSgnn
20 17 19 ccom classℤRHomrpmSgnn
21 12 cv setvarp
22 21 20 cfv classℤRHomrpmSgnnp
23 cmulr class𝑟
24 8 23 cfv classr
25 cmgp classmulGrp
26 8 25 cfv classmulGrpr
27 vx setvarx
28 27 cv setvarx
29 28 21 cfv classpx
30 4 cv setvarm
31 29 28 30 co classpxmx
32 27 6 31 cmpt classxnpxmx
33 26 32 11 co classmulGrprxnpxmx
34 22 33 24 co classℤRHomrpmSgnnprmulGrprxnpxmx
35 12 15 34 cmpt classpBaseSymGrpnℤRHomrpmSgnnprmulGrprxnpxmx
36 8 35 11 co classrpBaseSymGrpnℤRHomrpmSgnnprmulGrprxnpxmx
37 4 10 36 cmpt classmBasenMatrrpBaseSymGrpnℤRHomrpmSgnnprmulGrprxnpxmx
38 1 3 2 2 37 cmpo classnV,rVmBasenMatrrpBaseSymGrpnℤRHomrpmSgnnprmulGrprxnpxmx
39 0 38 wceq wffmaDet=nV,rVmBasenMatrrpBaseSymGrpnℤRHomrpmSgnnprmulGrprxnpxmx