Metamath Proof Explorer


Definition df-meet

Description: Define poset meet. (Contributed by NM, 12-Sep-2011) (Revised by NM, 8-Sep-2018)

Ref Expression
Assertion df-meet meet = p V x y z | x y glb p z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmee class meet
1 vp setvar p
2 cvv class V
3 vx setvar x
4 vy setvar y
5 vz setvar z
6 3 cv setvar x
7 4 cv setvar y
8 6 7 cpr class x y
9 cglb class glb
10 1 cv setvar p
11 10 9 cfv class glb p
12 5 cv setvar z
13 8 12 11 wbr wff x y glb p z
14 13 3 4 5 coprab class x y z | x y glb p z
15 1 2 14 cmpt class p V x y z | x y glb p z
16 0 15 wceq wff meet = p V x y z | x y glb p z