Database
BASIC ORDER THEORY
Partially ordered sets (posets)
df-meet
Next ⟩
lubfval
Metamath Proof Explorer
Ascii
Unicode
Definition
df-meet
Description:
Define poset meet.
(Contributed by
NM
, 12-Sep-2011)
(Revised by
NM
, 8-Sep-2018)
Ref
Expression
Assertion
df-meet
⊢
meet
=
p
∈
V
⟼
x
y
z
|
x
y
glb
⁡
p
z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmee
class
meet
1
vp
setvar
p
2
cvv
class
V
3
vx
setvar
x
4
vy
setvar
y
5
vz
setvar
z
6
3
cv
setvar
x
7
4
cv
setvar
y
8
6
7
cpr
class
x
y
9
cglb
class
glb
10
1
cv
setvar
p
11
10
9
cfv
class
glb
⁡
p
12
5
cv
setvar
z
13
8
12
11
wbr
wff
x
y
glb
⁡
p
z
14
13
3
4
5
coprab
class
x
y
z
|
x
y
glb
⁡
p
z
15
1
2
14
cmpt
class
p
∈
V
⟼
x
y
z
|
x
y
glb
⁡
p
z
16
0
15
wceq
wff
meet
=
p
∈
V
⟼
x
y
z
|
x
y
glb
⁡
p
z