Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
df-minusg
Next ⟩
df-sbg
Metamath Proof Explorer
Ascii
Unicode
Definition
df-minusg
Description:
Define inverse of group element.
(Contributed by
NM
, 24-Aug-2011)
Ref
Expression
Assertion
df-minusg
⊢
inv
g
=
g
∈
V
⟼
x
∈
Base
g
⟼
ι
w
∈
Base
g
|
w
+
g
x
=
0
g
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cminusg
class
inv
g
1
vg
setvar
g
2
cvv
class
V
3
vx
setvar
x
4
cbs
class
Base
5
1
cv
setvar
g
6
5
4
cfv
class
Base
g
7
vw
setvar
w
8
7
cv
setvar
w
9
cplusg
class
+
𝑔
10
5
9
cfv
class
+
g
11
3
cv
setvar
x
12
8
11
10
co
class
w
+
g
x
13
c0g
class
0
𝑔
14
5
13
cfv
class
0
g
15
12
14
wceq
wff
w
+
g
x
=
0
g
16
15
7
6
crio
class
ι
w
∈
Base
g
|
w
+
g
x
=
0
g
17
3
6
16
cmpt
class
x
∈
Base
g
⟼
ι
w
∈
Base
g
|
w
+
g
x
=
0
g
18
1
2
17
cmpt
class
g
∈
V
⟼
x
∈
Base
g
⟼
ι
w
∈
Base
g
|
w
+
g
x
=
0
g
19
0
18
wceq
wff
inv
g
=
g
∈
V
⟼
x
∈
Base
g
⟼
ι
w
∈
Base
g
|
w
+
g
x
=
0
g