Metamath Proof Explorer


Definition df-mnd

Description: Amonoid is a semigroup, which has a two-sided neutral element. Definition 2 in BourbakiAlg1 p. 12. In other words (according to the definition in Lang p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl ), whose operation is associative (see mndass ) and has a two-sided neutral element (see mndid ), see also ismnd . (Contributed by Mario Carneiro, 6-Jan-2015) (Revised by AV, 1-Feb-2020)

Ref Expression
Assertion df-mnd Could not format assertion : No typesetting found for |- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmnd class Mnd
1 vg setvar g
2 csgrp Could not format Smgrp : No typesetting found for class Smgrp with typecode class
3 cbs class Base
4 1 cv setvar g
5 4 3 cfv class Base g
6 vb setvar b
7 cplusg class + 𝑔
8 4 7 cfv class + g
9 vp setvar p
10 ve setvar e
11 6 cv setvar b
12 vx setvar x
13 10 cv setvar e
14 9 cv setvar p
15 12 cv setvar x
16 13 15 14 co class e p x
17 16 15 wceq wff e p x = x
18 15 13 14 co class x p e
19 18 15 wceq wff x p e = x
20 17 19 wa wff e p x = x x p e = x
21 20 12 11 wral wff x b e p x = x x p e = x
22 21 10 11 wrex wff e b x b e p x = x x p e = x
23 22 9 8 wsbc wff [˙+ g / p]˙ e b x b e p x = x x p e = x
24 23 6 5 wsbc wff [˙Base g / b]˙ [˙+ g / p]˙ e b x b e p x = x x p e = x
25 24 1 2 crab Could not format { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } : No typesetting found for class { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } with typecode class
26 0 25 wceq Could not format Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } : No typesetting found for wff Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } with typecode wff