Metamath Proof Explorer


Definition df-mpq

Description: Define pre-multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-2.4 of Gleason p. 119. (Contributed by NM, 28-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-mpq 𝑝𝑸 = x 𝑵 × 𝑵 , y 𝑵 × 𝑵 1 st x 𝑵 1 st y 2 nd x 𝑵 2 nd y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpq class 𝑝𝑸
1 vx setvar x
2 cnpi class 𝑵
3 2 2 cxp class 𝑵 × 𝑵
4 vy setvar y
5 c1st class 1 st
6 1 cv setvar x
7 6 5 cfv class 1 st x
8 cmi class 𝑵
9 4 cv setvar y
10 9 5 cfv class 1 st y
11 7 10 8 co class 1 st x 𝑵 1 st y
12 c2nd class 2 nd
13 6 12 cfv class 2 nd x
14 9 12 cfv class 2 nd y
15 13 14 8 co class 2 nd x 𝑵 2 nd y
16 11 15 cop class 1 st x 𝑵 1 st y 2 nd x 𝑵 2 nd y
17 1 4 3 3 16 cmpo class x 𝑵 × 𝑵 , y 𝑵 × 𝑵 1 st x 𝑵 1 st y 2 nd x 𝑵 2 nd y
18 0 17 wceq wff 𝑝𝑸 = x 𝑵 × 𝑵 , y 𝑵 × 𝑵 1 st x 𝑵 1 st y 2 nd x 𝑵 2 nd y