Metamath Proof Explorer


Definition df-ms

Description: Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion df-ms MetSp = f ∞MetSp | dist f Base f × Base f Met Base f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cms class MetSp
1 vf setvar f
2 cxms class ∞MetSp
3 cds class dist
4 1 cv setvar f
5 4 3 cfv class dist f
6 cbs class Base
7 4 6 cfv class Base f
8 7 7 cxp class Base f × Base f
9 5 8 cres class dist f Base f × Base f
10 cmet class Met
11 7 10 cfv class Met Base f
12 9 11 wcel wff dist f Base f × Base f Met Base f
13 12 1 2 crab class f ∞MetSp | dist f Base f × Base f Met Base f
14 0 13 wceq wff MetSp = f ∞MetSp | dist f Base f × Base f Met Base f