Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
df-mu
Metamath Proof Explorer
Definition df-mu
Description: Define the Möbius function, which is zero for non-squarefree
numbers and is -u 1 or 1 for squarefree numbers according as to
the number of prime divisors of the number is even or odd, see
definition in ApostolNT p. 24. (Contributed by Mario Carneiro , 22-Sep-2014)
Ref
Expression
Assertion
df-mu
⊢ μ = x ∈ ℕ ⟼ if ∃ p ∈ ℙ p 2 ∥ x 0 − 1 p ∈ ℙ | p ∥ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmu
class μ
1
vx
setvar x
2
cn
class ℕ
3
vp
setvar p
4
cprime
class ℙ
5
3
cv
setvar p
6
cexp
class ^
7
c2
class 2
8
5 7 6
co
class p 2
9
cdvds
class ∥
10
1
cv
setvar x
11
8 10 9
wbr
wff p 2 ∥ x
12
11 3 4
wrex
wff ∃ p ∈ ℙ p 2 ∥ x
13
cc0
class 0
14
c1
class 1
15
14
cneg
class -1
16
chash
class .
17
5 10 9
wbr
wff p ∥ x
18
17 3 4
crab
class p ∈ ℙ | p ∥ x
19
18 16
cfv
class p ∈ ℙ | p ∥ x
20
15 19 6
co
class − 1 p ∈ ℙ | p ∥ x
21
12 13 20
cif
class if ∃ p ∈ ℙ p 2 ∥ x 0 − 1 p ∈ ℙ | p ∥ x
22
1 2 21
cmpt
class x ∈ ℕ ⟼ if ∃ p ∈ ℙ p 2 ∥ x 0 − 1 p ∈ ℙ | p ∥ x
23
0 22
wceq
wff μ = x ∈ ℕ ⟼ if ∃ p ∈ ℙ p 2 ∥ x 0 − 1 p ∈ ℙ | p ∥ x