Metamath Proof Explorer


Definition df-mzpcl

Description: Define the polynomially closed function rings over an arbitrary index set v . The set ( mzPolyCldv ) contains all sets of functions from ( ZZ ^m v ) to ZZ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself ( mzPolyv ) ; see df-mzp . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion df-mzpcl mzPolyCld = v V p 𝒫 v | i v × i p j v x v x j p f p g p f + f g p f × f g p

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmzpcl class mzPolyCld
1 vv setvar v
2 cvv class V
3 vp setvar p
4 cz class
5 cmap class 𝑚
6 1 cv setvar v
7 4 6 5 co class v
8 4 7 5 co class v
9 8 cpw class 𝒫 v
10 vi setvar i
11 10 cv setvar i
12 11 csn class i
13 7 12 cxp class v × i
14 3 cv setvar p
15 13 14 wcel wff v × i p
16 15 10 4 wral wff i v × i p
17 vj setvar j
18 vx setvar x
19 18 cv setvar x
20 17 cv setvar j
21 20 19 cfv class x j
22 18 7 21 cmpt class x v x j
23 22 14 wcel wff x v x j p
24 23 17 6 wral wff j v x v x j p
25 16 24 wa wff i v × i p j v x v x j p
26 vf setvar f
27 vg setvar g
28 26 cv setvar f
29 caddc class +
30 29 cof class f +
31 27 cv setvar g
32 28 31 30 co class f + f g
33 32 14 wcel wff f + f g p
34 cmul class ×
35 34 cof class f ×
36 28 31 35 co class f × f g
37 36 14 wcel wff f × f g p
38 33 37 wa wff f + f g p f × f g p
39 38 27 14 wral wff g p f + f g p f × f g p
40 39 26 14 wral wff f p g p f + f g p f × f g p
41 25 40 wa wff i v × i p j v x v x j p f p g p f + f g p f × f g p
42 41 3 9 crab class p 𝒫 v | i v × i p j v x v x j p f p g p f + f g p f × f g p
43 1 2 42 cmpt class v V p 𝒫 v | i v × i p j v x v x j p f p g p f + f g p f × f g p
44 0 43 wceq wff mzPolyCld = v V p 𝒫 v | i v × i p j v x v x j p f p g p f + f g p f × f g p