Metamath Proof Explorer


Definition df-nat

Description: Definition of a natural transformation between two functors. A natural transformation A : F --> G is a collection of arrows A ( x ) : F ( x ) --> G ( x ) , such that A ( y ) o. F ( h ) = G ( h ) o. A ( x ) for each morphism h : x --> y . Definition 6.1 in Adamek p. 83, and definition in Lang p. 65. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-nat Nat = t Cat , u Cat f t Func u , g t Func u 1 st f / r 1 st g / s a x Base t r x Hom u s x | x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnat class Nat
1 vt setvar t
2 ccat class Cat
3 vu setvar u
4 vf setvar f
5 1 cv setvar t
6 cfunc class Func
7 3 cv setvar u
8 5 7 6 co class t Func u
9 vg setvar g
10 c1st class 1 st
11 4 cv setvar f
12 11 10 cfv class 1 st f
13 vr setvar r
14 9 cv setvar g
15 14 10 cfv class 1 st g
16 vs setvar s
17 va setvar a
18 vx setvar x
19 cbs class Base
20 5 19 cfv class Base t
21 13 cv setvar r
22 18 cv setvar x
23 22 21 cfv class r x
24 chom class Hom
25 7 24 cfv class Hom u
26 16 cv setvar s
27 22 26 cfv class s x
28 23 27 25 co class r x Hom u s x
29 18 20 28 cixp class x Base t r x Hom u s x
30 vy setvar y
31 vh setvar h
32 5 24 cfv class Hom t
33 30 cv setvar y
34 22 33 32 co class x Hom t y
35 17 cv setvar a
36 33 35 cfv class a y
37 33 21 cfv class r y
38 23 37 cop class r x r y
39 cco class comp
40 7 39 cfv class comp u
41 33 26 cfv class s y
42 38 41 40 co class r x r y comp u s y
43 c2nd class 2 nd
44 11 43 cfv class 2 nd f
45 22 33 44 co class x 2 nd f y
46 31 cv setvar h
47 46 45 cfv class x 2 nd f y h
48 36 47 42 co class a y r x r y comp u s y x 2 nd f y h
49 14 43 cfv class 2 nd g
50 22 33 49 co class x 2 nd g y
51 46 50 cfv class x 2 nd g y h
52 23 27 cop class r x s x
53 52 41 40 co class r x s x comp u s y
54 22 35 cfv class a x
55 51 54 53 co class x 2 nd g y h r x s x comp u s y a x
56 48 55 wceq wff a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
57 56 31 34 wral wff h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
58 57 30 20 wral wff y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
59 58 18 20 wral wff x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
60 59 17 29 crab class a x Base t r x Hom u s x | x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
61 16 15 60 csb class 1 st g / s a x Base t r x Hom u s x | x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
62 13 12 61 csb class 1 st f / r 1 st g / s a x Base t r x Hom u s x | x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
63 4 9 8 8 62 cmpo class f t Func u , g t Func u 1 st f / r 1 st g / s a x Base t r x Hom u s x | x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
64 1 3 2 2 63 cmpo class t Cat , u Cat f t Func u , g t Func u 1 st f / r 1 st g / s a x Base t r x Hom u s x | x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x
65 0 64 wceq wff Nat = t Cat , u Cat f t Func u , g t Func u 1 st f / r 1 st g / s a x Base t r x Hom u s x | x Base t y Base t h x Hom t y a y r x r y comp u s y x 2 nd f y h = x 2 nd g y h r x s x comp u s y a x