Metamath Proof Explorer


Definition df-negs

Description: Define surreal negation. Definition from Conway p. 5. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-negs + s = norec s #A# x V , n V n R x | s n L x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnegs class + s
1 vx setvar x
2 cvv class V
3 vn setvar n
4 3 cv setvar n
5 cright class R
6 1 cv setvar x
7 6 5 cfv class R x
8 4 7 cima class n R x
9 cscut class | s
10 cleft class L
11 6 10 cfv class L x
12 4 11 cima class n L x
13 8 12 9 co class n R x | s n L x
14 1 3 2 2 13 cmpo class x V , n V n R x | s n L x
15 14 cnorec class norec s #A# x V , n V n R x | s n L x
16 0 15 wceq wff + s = norec s #A# x V , n V n R x | s n L x