Metamath Proof Explorer
Description: Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
df-nlfn |
|
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cnl |
|
1 |
|
vt |
|
2 |
|
cc |
|
3 |
|
cmap |
|
4 |
|
chba |
|
5 |
2 4 3
|
co |
|
6 |
1
|
cv |
|
7 |
6
|
ccnv |
|
8 |
|
cc0 |
|
9 |
8
|
csn |
|
10 |
7 9
|
cima |
|
11 |
1 5 10
|
cmpt |
|
12 |
0 11
|
wceq |
|