Metamath Proof Explorer
		
		
		
		Description:  Define the null space of a Hilbert space functional.  (Contributed by NM, 11-Feb-2006)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-nlfn |  | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnl |  | 
						
							| 1 |  | vt |  | 
						
							| 2 |  | cc |  | 
						
							| 3 |  | cmap |  | 
						
							| 4 |  | chba |  | 
						
							| 5 | 2 4 3 | co |  | 
						
							| 6 | 1 | cv |  | 
						
							| 7 | 6 | ccnv |  | 
						
							| 8 |  | cc0 |  | 
						
							| 9 | 8 | csn |  | 
						
							| 10 | 7 9 | cima |  | 
						
							| 11 | 1 5 10 | cmpt |  | 
						
							| 12 | 0 11 | wceq |  |